
AD AO74 336 STANFORD UNIV CA DIV OF APPLIED MECHANICS 
::: ~

i::-I F/G 11/4
STEADY STATE SOURCE EXCITAT

rLA!! D
1

~~~~~
A
~~
!r

E.1HER

~~~~~

N N 000!76 C 0!4

LU. “ UEND
OAT

— p o—-.19
— nbc



IIIII~
I II ~

________ 
1.8

liii!’ .25 IIIII~ . iiiii~
:.

MICROCOPY RESOLUTION TEST CHP~ T
NA1ION~L BURF~AU OF STANOARDS 1963- ,~



Off ice of Naval Research OF
Department of the Navy
Scientific Report APPLIEDContract N00014— 76—C-0054 

MECHANICS

DEPARTMENT
STEADY-STATE POINT-SOURCE EXCITATION OF
OF A LAMINATED COMPOSITE MECHANICAL

ENGINEERING
by D D C
G. S. Beaupre flj \~f?f7~fp Qfl j3~ fl~

1U4~ ~~ lilt
UU~ 1.~U~U % J L~~J

E

I ~~~~ SUDAM Report No. 7 9 3  STANFORD
I ‘-~.J UNIVERSITY

j STANFORD,June 1979
CALIFORNIA
94305

This document has been approved for public release
and sale; its distribution is unlimited.

79 0 9  26 00~
t k  

_ _ _ _ _ _  _ _ _ _  _ _ _  _ _ _

— 
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~ 

—



UNCLASSIFIED
SECURITY CLASSIF ICATION OF THIS PAGE (RIiin Dat. Ent.r.d)

~~~~~ ~~~~~~
1L

~ELI ~VIf ~Ll b A I E READ INSTRUCTIONSr~ r ’ji~ U uu’...ijm “ i ~~~~ ~~~~~ U BEFORE COMPLETING FORM

~~~~~~~ 
1.. .BEPO -WuM~~ 2. GOVT ACCESSION NO. 3. RECIPIENTS CATALOG NUMBER

4. TITLE (and Subtiti.) 5.~~TYPf OF REPORT S PERIOD COVERED

(~ ) ,~ TEADY—STATE ..POINT-SOURC E EXCITAT ION OF~~7 
(~ 

INTERIM /~~ ~‘~~L 
~LAMINATED C~ fPOSITE • ReP~~RT Il IMBER

7. A THOR(S) S. CONTRACT OR GRANT NUMBER(S)

/0 £ ~ EAUPRE1 . ...-
G./üERRX4AN~~ J /‘‘ NØØQ14-76-C-PU54’/

9. PERFORMING O R G A N I Z A T I O N  NAM E AND ADDR.tSS 10. PROGRAM ELEMENT. PROJECT , TASK

DIVISION OF APPLIED MECHANICS ‘ AREA S WORK UNIT NUMBERS

STANFORD UNIVERSITY ONR:474
STANFORD , CALIFORNIA 94305

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
OFFICE OF NAVAL RESEARCH // ~~~~~~~~~DEPARTMENT OF ThE NAVY — oF PAGES

ARLINGTON , VIRGINIA 22217 __________________________
14. MONITORING AGENCY NAME I AODRESS(II dilf .r .n t f,om Controlling OllSc.) IS. SECURITY CLASS. (of lAS. rip eN)

F ) UNCLASSIFIED
‘ ( ISa• DECLASSIFICAT ION/OOW NGRA DIMG

IS. DISTRIBUTION STATEMENT (of this R.po,t)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

97. DISTRIBUTION STATEMENT (of A. abstrac t .nts ,.d in Block 30, II dlft .r.nt from R.poN)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Condnu. on r.v.rii 11d If n.c.aomy and Sd.ntl& by bloc k nianbac)

COMPOSITES WAVE PROPAGATION
LAMINATES DISPERSION
GEOMETRIC OPTICS

ABSTRACT (Confirm. on r.v rS• .id. If n•c.•imy and idinti fr by block manbir )

‘1 Steady—state periodic excitation at a point of an extended periodically
laminated elastic composite is considered in anti—plane strain. The
curves of constant phase are determined in the geometric optics approxi-
mation. The associated distribution of group velocity is also calculated.

DD ~~ 1473 :,~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OQNIS I” ASt (WINNi Data

/L’~~ 
,
~~~/

~ .



1

STEADY—STATE POINT—SOURCE EXCITATION OF A LAMINATED COMPOSITE

Abet ract

Steady—state periodic excitation at a point of an extended periodically

laminated elastic composite is considered in anti—plane strain. The curves

of constant phase are determined in the geometric optics approximation. The

associated distribution of group velocity is also calculated.
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-
~~~ Int roduction

The propagation of horizontally polarized harmonic shear waves through

a periodically layered elastic body of unbounded extent is examined here in

the geometric optics approximation. The geometric optics approach is valid

for high frequencies where the relevant wavelength is small in comparison

with some characteristic dimension of the problem. Under this approximation

any quantity which describes the wave field can be expressed in the form of

an amplitude, which var ies slowly in space and time, multiplied by a phase

factor of the form e NS
, where ~ is the frequency and S is the phase. 4

Following the notation of reference El], the phase S can be written in the

form S — t— a(x). The surfaces S con&taat, which are surfaces of constant

phase will be examined for the steady state case of a constant frequency

point source.

Inf inite Medium

The propagation of horizontally polarized harmonic shear waves through

a periodically layered body of inf ini te extent has been analyzed in some

detail in reference [2] and is summarized here as far as needed in the

following.

I.

The system to be considered consists of an infinite sequence of two

alternating layers, each of which is homogeneous , isotropic and perfectly

bonded to the adjoining layers. A unit cell is defined as the union of any

two adjacent layers. The two lamellae of a typical unit cell have elastic

constants A , 
~; A ,  p ,  thicknesses 2k; 2h , and densities p; p ,  see

Fig. las 
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By utilizing the equations of elasticity and imposing continuity con-

ditions, which specify that the displacements and stresses are continuous at

each layer interface , we can write the equa tion of motion for the lamina ted

body. For the infinite medium this equation takes on the form of a partial

differential equation with coefficients which are periodic in the direction

perpendicular to the layering with period d 2h + 2h. Application of the

one—dimensional theory of Floquet for differential equations with periodic

coefficients leads to the result that the details of the motion of the

entire laminated body can be obtained by considering only one unit cell.

Therefore the boundary conditions for one unit cell using Floquet’s theory

represent a set of four homogeneous equations which are sufficient to de—

scribe the entire laminated body.

For a nontrivial solution the determinant of the matrix of coefficients

of these fou r homogeneous equations must vanish , yielding the dispersion

equation H’ (~2, r~, ~
) — 0 or in expanded form

4yaa cos irn (l + c) + (ya — ~i
2 cos ~(a —

+ ~~)
2 
cos 1r(a + Ecf) — 0 (1)

Here a ,~~~2 — ~~ 
.,
~J02 ~2 — where 

~~
, 

~
, and 

~ 
are, respectively,

the nond imensional freq uencies and wave numbers def ined by

~ 2h~ C ’ ~~~~ k ;
it Z fl (2)

where ~~, k , and k are , respectively , the circular frequency in rad ians

per unit of time, the wave number in the direction parallel to the layering,

and the wave number in the direction perpendicular to the layering. In

addition , the geometric and material parameters are defined in the following 
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:~~ 
manner: -y is the ratio of shear moduli (p /a’), ~ is the ratio of layer

thicknesses (2h’/2h), and ~ is the ra tio of shear wave speeds

a —

Since the dispersion equation related a nondiinensional frequency to

two nondimensional wave numbers, the roots of this equation define a surface

in three—dimensional frequency—wave number space. A qualitative sketch of

this surface is shown in Fig. lb. It is seen that the surface is discon-

tinuous at i~ — n/ (l  + ~), ii — 1, 2, 3,... These planes of discontinuity

divide the surface into bands known as Brillouin zones. At the end of each

Brillouin zone (with the exception of i~ 
— 0) the dispersion equation admits

complex as well as real roots. These portions of the dispersion spectrum

for which the wave numbers are complex are called stopping bands and corre-

spond to regions of the spectrum where harmonic waves are not propaga ted

but attenuated exponentially. Curves of constant frequency on the surface

over the first two Brillouin zones are shown in Fig. 2. These curves play

an important part in the construction of the surfaces of constant phase.

Geometric Optics

Introducing the geometric optics approximation we assume that any

quantity which describes the wave field can be expressed by a formula of

the type Ae ’
~~ where A is the ampl itude , which varies slowly in space

and time, ~ is the freq uency, and S is the phase. Following the notation

and methodology outlined in reference [11, we wr ite S in the form

S t — 0(x). The wavefronts defined by S (x , t) — 0 can be found by

examining the surfaces 0(X) — constant for fixed time. These “snapshots ”

give the successive positions of the wavefront in physical space. To find 

~~~~~~~~~~~~~~~~~~~~~~~~



the shape of these wavefronts in physical space we begin by rewriting

the dispersion equation for the steady state case of a single frequency,

say g — 
~~~

• Doing this the dispersion relation takes the form

H (p1, p2) — 0 Pj — a1

where the Pj  can be interpreted as the components of the slowness vector

defined by and The dispersion relation in this form is called

the eikonal equation or equation of geometrical optics. The standard

method of solving equation (3) is by means of the characteristic or ray

equations, which proceeds as follows, ref. 1:

Consider an equation in n independent variables (x1, x2, X3 • • •  1n)

and a function a (x1, x2, x3, ... x~) which satisfies a differential
equation H (p, a, x) where p and x are vectors of dimension n and

— i — 1, 2, 3 ... nax1 x~

We wish to find whether there are any curves in x—space for which the

differential equation H (p, a, x) reduces to a set of first order ordinary

differential equations.

We begin by noting that any curve in x—space may be written in the

parametric form x — x (A). The total derivative of a along one of these

curves is given by

d0 3a dx1 dx1.
~

. 
~~~~~~~~~ 

(5) 
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where the summation convention is employed. In addition consider the total

derivative of p1 along the same curve

dp 
— 

d ~ 
— 

a2 
(6)

dA dA ( 3Xj ) ax iax~ dA

Finally let us take the x1 derivative of H (p, a, x) — 0 which gives

+ ~~ + — 0 (7)ax j aX j  3P~ ao ~x1 ax 1
By choosing as our definition for the special curves in x—space the

following

au 
(8)

~~
-- ii~1

we may combine equations (6) and (7) to give

dpi aN aN

The use of equation (7) in (4) then yields

(10)

The set of equations (8), (9) and (10) now represents a complete set of

(2 n + 1) ordinary differential equations for determining a characteristic

curve x1 (
~
) and the values of a and p1 along it.

Specializing these results to our case gives

dx1 dp1 do (11)— (V H)
1; 

-
~~~~

- — 0 ; — (p.V H)

where A is a parameter along the characteristic curve (ray). The second of

equations (11) indicates that Pj are constant along rays, hence the ray

~~ ,—. , ...,-~~~~——___
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direction 
~~ is constant and therefore the rays are straight lines. Since

the Pi are constant we can integrate equation (11) directly. For the case

of a point source of constant frequency located at the origin, we can readily

obtain,

X
i 

— ~~s — p.~ a (12)

where £ is a unit vector defined by

— (13)

~ I I v R I I

and s is the distance from the source measured along the ray. From these

equations we find that the waye~ront S 0 Is lQcated at

= 
t

~ (14)

and the coordinates of a point on the wavefront are

(15)

By varying Pi over all values satisfying H ~~i1 P2
) — 0 for ~ — we can find

the entire wavefront. It should be noted that these wavefronts can be found by

examining curves of constant frequency in p—space (Fig. 2). If for example we

choose a particular value for ç~, say 0.9, (see Fig. 3), then £ is merely the

unit normal to the curve for any choice of p~ satisfying H ~Pl’ P2
) — 0 for

— 0.9. By varying pj~ along the curve we can trace out the entire wavefront

(Pig. 4a).

With the aid of a compass and two triangles a very simple geometric con—

struction of these wavefronts is possible. We begin by drawing a coordinate

. _____________
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0
system with the same orientation as the coordinate system in Fig. 2 From

Fig. 2 choose a value for ~ and select a point along the curve ~2 — constant.

Now draw the normal to the curve at this point. With the aid of the

triangles draw a line passing through the origin of our new coord inate

system which is parallel to this normal. Now working with Fig. 2 project

the wave number vector onto the unit normal vector. The length of this

vector is proportional to p.& (since £ is a unit vector). All that

remains is to take the inverse of this length. This is accomplished by

drawing a reference hyperbola and using the compass to measure the inverse.

This length Is then measured from the origin of our new coord inate system

along the paralled to 
~~. This is the first point of the wavefront. The

process Is repeated for different points on the same curve ~ — constant

until a sufficient number of points exist in order to pass a smoqth curve

through them.

Because the eikonal equation is unchanged by switching from Pj  to

the wavef ronts will be symmetric in the x1, x2 axis. The complete

picture is shown in Fig. 5. The wavefronts for different values of ~2 are

shown In Fig. 4b, 4c, 4d.

These figures of course give no information concerning energy die—

t ribution. It may be of interest ,though, to examine the magnitude and

direction of velocity of energy propagation. To accomplish this a

numerical finite difference calculation was carried out to show the
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p.

group velocity vector at points on the zero phase curves. Here the

group velocity is defined as.

c — — (-_~~~e + .—~
.!!e ) /..j.~

’

an~~ a~~
C / ~

where H 1s  the dispersion relation written as a function of 
~~, c n

which were previously defined and which are unit vectors in the

direction perpendicular and parallel to the layering,respectively.

The Figs,6a , 6b , 6c, 6d duplicate the phase curves prev iously sho wn ,but

now include group velocity information as well. The magnitude of the

group velocity vector normal ized by the phase velocity /jfp is drawn

radially outward from each zero phase curve where the vectors begin, not

at the origin but at the appropriate point on each phase curve. It

should be noted that the zero phase curve passing through the conical

f point (Fig. 6c) has a pointwlse discontinuity in the value of the group

velocity at the conical point.

____ __________________  
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Conclusion

Through the utilization of the geometric optics approximation surfaces

of constant phase were examined for the case of a point source imbedded in

a periodically layered elastic body. Knowledge of the shape of these

surfaces is the f irst step toward understanding how more complicated signals

propagate. For instance, we already know from examining these zero phase

surfaces that an observer stationed somewhere within the medium would detect

one, two, or three distinct signals depending upon ones orientation with

respect to the source. A similar phenomenon occurs in the case described

in reference El] for waves in a MMD plasma.
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Caption of Figures

Fig. la, b Geometry and antiplane dispersion surface for layered

elastic solid.

Fig . 2 Curves of constant ~ on the antiplane strain dispersion

surface.

Fig. 3 Curve of ~ — 0.9 showing vectors E and £.

Fig. 1sa, b, Curves of constant phase for different values of ~.
c, d

Fig. 5 Complete wavefront for ~2 — 1.0.

Fig. 6a , b, Dist ribution of group velocity on curves of constant phase.
c, d
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